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Cylindrical solitary waves 
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(Received 19 August 1981 and in revised form 4 November 1987) 

Experiments on the radial propagation of axisymmetric free-surface solitary waves 
are reported and compared with theoretical and numerical solutions of the cylindrical 
Korteweg-de Vries (CKdV) equation. A new experimental technique to obtain a 
continuous amplitude signature on photographic paper is reported. These measure- 
ments show that an isolated disturbance evolves into a slowly varying solitary 
wave with amplitude decaying as r-9, where r is the radius measured from the centre 
of the disturbance. A numerical study of the CKdV equation is made to interpret the 
transient development of these waves into the nonlinear asymptotic regime. It is 
further pointed out that the CKdV equation also describes weakly nonlinear 
axisymmetric internal waves, and a comparison of theory for this case with internal- 
wave trajectory measurements reported by Maxworthy (1980) exhibit good 
agreement. 

1. Introduction 
When the effects of geometrical distortion on a propagating gravity wave are 

comparable with those of amplitude nonlinearity and phase dispersion, it is not 
uncommon to find that its mathematical description can be reduced to some form of 
a variable-coefficient Korteweg-de Vries (KdV) equation. Kakutani (1971) and 
,Johnson (1973), for example, have derived variable-coefficient KdV equations 
describing the effect of changing fluid depth on long, one-dimensional shallow-water 
waves. Shuto (1974), Ostrovoskiy & Pelinovskiy (1974,  and Miles (1977) have each 
derived such equations to account for variable channel cross-section. With an 
interest in radially propagating ion-acoustic waves, Maxon & Viecelli (1974) 
introduced and analysed what will hereinafter be called the cylindrical Korteweg-de 
Vries (CKdV) equation. Their numerical results demonstrated that inward- 
propagating cylindrical waves may be characterized as slowly varying solitary waves 
in that ah2 = const., where a is the wave amplitude and h its wavelength. Using 
similarity arguments and energy conservation, Cumberbatch (1978) further 
interpreted the numerical results of Maxon & Viecelli (1974), showing that the 
amplitude dependence on radial position is given by a cc r-g, where r is the radial 
coordinate from the origin of the disturbance. This nonlinear Green’s law was 
actually derived earlier by Miles (1977) in the context of nonlinear waves propagating 
in channels with slowly converging or diverging sidewalls. 

Solutions for variable-coefficient KdV equations have been reported by a number 
of authors. Leibovich & Randall (1973) may be credited as the first to discover (via 
their numerical work) the existence of a ‘shelf ’, a flat wave of elevation or depression 
which evolves behind slowly varying solitary waves, and later Kaup & Newel1 (1978) 
predicted them analytically using inverse scattering methods. Miles (1978) was the 
first to derive the CKdV equation in the context of free-surface gravity waves and 
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considered in detail similarity solutions for both dispersive and solitary waves. 
KO & Kuehl(l978, 1979) have also explicitly studied solitary waves governed by the 
CKdV equation as a particular case of their move general (albeit non-uniform) 
perturbation solution. Grimshaw (1979) extended the work of KO & Kuehl by 
considering waves which depend on both slow time and slow space variables, and 
attempted to remove non-uniformities by matching to an outer expansion. Exact 
solutions to the CKdV equation are indeed difficult to find, but sec Calogcro & 
Desgasperis (1978) and Grimshaw (1979). 

Although in a different parameter regime, that of the self-focusing of nonlinear 
cylindrical waves, we mention the study of Chwang & Wu (1976) for completeness. 
One particularly interesting result of their numerical study was the observation of a 
phase shift between a radially inward- propagating wave and the outward- 
propagating wave formed by self-reflection in a constant-depth fluid. This rcpresents 
the axisymmetrjc counterpart of the phase shift incurred by the weak interaction 
(head-on collision) of two planar solitions (see, for example, Xu & Mirie 1980). 

Experiments on solitary free-surface gravity waves in channels of variable cross- 
section are included in papers by Perroud (1957), Chang, Melville & Miles (1979), and 
Maxworthy (1980). Chang et al. and Perroud measured wave amplification 
(attenuation) in constant-depth channels with uniformly decreasing (increasing) 
breadth b a t  converging (diverging) angles of approximately 0.02 rad (0.1 rad). Miles 
(1977) found ‘fairly satisfactory ’ agreement when comparing Perroud’s data for the 
converging channel with the nonlinear Green’s law, a cc b-i, but reported un- 
satisfactory agreement for the diverging channel. Chang et al. report good agreement 
between their measured and computed amplitudes for both converging and diverging 
channels when the effects of viscous damping are taken into account, and their 
measured wave profiles show evidence of the formation of shelf waves. 

The results presented here provide further documentation of the nonlinear- 
dispersive balance for radially propagating cylindrical waves. I n  $2 we give a short 
derivation of the salient features of slowly varying axisymmetric solitary waves and 
mention their relevance to internal as well as free-surface waves. Measurements of 
the amplitude decay for outward-propagating free-surface waves are presented in 5 3 
along with a comparison of theoretically predicted phase trajectories with internal- 
wave measurements reported by Maxworthy (1980). I n  order to better interpret the 
free-surface amplitude experiments, we include in $4 a short numerical study to 
investigate the influence of disturbance wave shape and wave volume on amplitude 
evolution as described by the CKdV equation. The discussion of results is presented 
in $5 and concluding remarks are given in $6. 

2. Solution-like properties of the CKdV equation 
We begin with the dimensional evolution equation for the free-surface dis- 

placement 7 of axisymmetric waves in a homogeneous fluid derived by Miles 
(1978)t 

7 This equation only describes unidirectional radially propagating waves and does not conserve 
mass. Hence i t  may only represent the asymptotic part of a true initial-value problem. Further 
discussion of this aspect of the problem is given by Miles (1978) and Chang et al. (1979). 
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where r ,  t ,  and h are respectively the radius, time, and quiescent fluid depth. Here 
c = (gh); is the one-dimensional linear long-wave speed, with g the gravitational 
constant. The inherent balance between nonlinearity, dispersion, and radial 
spreading in (1) is ensured if r = O(h%/ai). A non-dimensional form suitable for 
numerical computation is given by 

where we have retained only the highest-order terms after applying the trans- 
formation 

under the assumption that the amplitude parameter s = a / h  is small. A final 
reduction to the variable-coefficient KdV equation 

is furnished by the dependent-variable transformation 6 = u/@. For future reference, 
we note that the equation describing dispersionless linear disturbances is obtained by 
neglecting the last two terms in (2).  Solution of this truncated equation furnishes the 
linear decay law a K r-;. 

We first consider some simple results derived by viewing (2) as a constant- 
coefficient KdV equation forced by the radial distortion term 5/26. In the absence of 
this term, the solution of (2) that decays to zero a t  both upstream and downstream 
infinity is given by 

(4) [([, 7 )  = a2sech2 [2/3~a(7-~a26)]  

and we now allow the solition parameter a to be a slowly varying function of the 
distortion variable 6. Multiplying (2) by 5 and integrating on r for fixed 5 gives 

Calculating C5 with the aid of (4) and performing the quadratures yields the 
differential equation at = -01136, which has solution a = const 6-i. In  dimensional 
variables this gives the amplitude decay law 

a = klr-g, ( 5 )  

and the corresponding wave trajectory obtained by setting the phase in (4) equal to  
zero takes the form 

t = - ( r -  k2ri) ,  (6) 
1 
C 

where k ,  and k ,  are constants. 
These simple results can be compared with the perturbation solution of the 

variable-coefficient equation (3) reported by KO & Kuehl (1978). Their results 
written in physical variables provides a description for the wave amplitude 

a 1  - = 
a0 Y3 

[ 1 + k( 1 - 5 In y ) ] ,  (7) 
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and the nonlinear wave velocity 

where y = r/ro and 

Equations (7)-(9) are valid as long as the radial distortion is sufficiently weak and the 
fractional energy loss E = - ($2) lny is small. The zero subscripts refer to initial 
reference values in the slowly varying regime where amplitude nonlinearity, phase 
dispersion, and radial distortion are of equal order. Note that our results for wave 
amplitude (5 )  and phase trajectory (6) give the correct first-order behaviours for (7) 
and (8), respectively. 

Detailed features of wave evolution from an initial sech-squared disturbance 
centred a t  g = 10 are displayed in figure 1. The wave profiles have been obtained by 
numerical integration of (2) using periodic boundary conditions and following the 
finite-difference scheme used by KO (1978). The numerical technique (Vliegenthart 
1971) is 0 ( A r 2 )  in 5, CT, CTTT and is O(AC2) in &. This produces numerical errors 
O(AE3) and 0 ( A r 2 A ( )  in 

which gives a limiting 
typically 0.2. 

(2). The stability analysis for AT -4 1 imposes the constraint 

A5 - < 1.5, 
AT3 

error 0 ( A r 5 ) .  For the calculations presented here, AT was 
_ -  

Since T is the non-dimensional coordinate moving with the one-dimensional linear 
phase speed, displacements from T = 0 are due to a combination of nonlinear, 
dispersive, and radial distortion effects. In figure 1 a depression wave or 'shelf' of 
increasing width and decreasing depth is seen to form behind the primary 
disturbance, and is itself trailed by a weak dispersive tail. Calculated values of the 
peak amplitude Cp and maximum shelf height 1CS1 (magnified by a factor of ten) are 
plotted versus the non-dimensional radius 6 in figure 2. In less than 10 radial units 
the primary disturbance has evolved into the -$-power amplitude decay law. The 
shelf, however, develops more slowly and does not attain its -$-power amplitude 
attenuation until the wave has propagated 30 radial units. Although the perturbation 
solution of Ko & Kuehl(l978) is strictly valid only near the wave crest, an evaluation 
of their theory far behind the crest does indicate the presence of a constant- 
amplitude shelf, but with a -$-power-law decay rate (cf. KO & Kuehll979, equation 
(17)). The -+-power-law dependence, to be expected from a consideration of the shelf 
wave as a linear disturbance, is implicit in the work of Miles (1978) and is given 
explicitly in Chang et al. (1979, equation (1.7)) for the c$se of a channel with linearly 
varying breadth. 

The CKdV equation also describes, not surprisingly, the evolution of cylindrically 
propagating internal waves in a stably stratified fluid. Following the analysis of 
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FIGURE 1. Profiles of axisymmetric wave evolution from an initial sech-squared disturbance 
centred at E =  10 obtained from numerical integration of the CKdV equation (2). Note the 
formation of a shelf of depression immediately following the solitary wave. 
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FIGURE 2. Peak amplitude decay of the primary wave &, and formation of the trailing depression 
shelf with maximum amplitude lcJ. The points are numerical results and the solid curves 
correspond to -$- and -i-power-law decay rates. 

Benney (1966), one can consider axisymmetric wave propagation in a stratified fluid 
bounded above and below by horizontal rigid walls to obtain the CKdV counterpart 
of Benny’s KdV equation (76) with the same modal coefficients given by his 
equations (80) and (81). For the simplest case of a two-layer system with lower and 
upper fluid depths h,, h, and densities pl ,  p z ,  respectively, only a single mode persists 
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FIGURE 3. Diagram of the experimental facility showing the square tank and (a )  the lead cylindrical 
wave, ( b )  the secondary cylindrical wave, (c) the reflected waves, ( d )  the quarter-circle diaphram, 
( e )  the wave generator with piston near the top of its st,roke, and (f) a detail of the photographic- 
paper suspension system. 

and results (7) ,  (8), and (9) remain valid if one replaces c by c,, h by h,, and redefine the 
linear wave speed c1 as 

Here R = hJh,  (T = p2/p1, and h = h, + h, is the total fluid depth. This result for a two- 
layer fluid provides the basis for comparison of theory and experiment in 33.2. 

3. Experimental procedure and results 
All measurements were conducted in the square tank facility (245 cm on a side) 

previously used by Maxworthy (1980). Local disturbances initiated in one corner of 
the tank were observed to evolve into axisymmetric waves propagating outward 
across the 90" sector as shown in figure 3. It will soon be evident that free-surface 
waves easily lend themselves to amplitude but not trajectory measurement, while 
the opposite holds true for internal waves. Experimental measurements and 
comparison with theory for the free-surface and internal-wave systems are presented 
in the following two sections. 

3.1. Free surface cylindrical wave8 

A hand-actuated piston (figure 3, detail ( e ) )  provided the initial disturbance for the 
free-surface waves. This method of wave generation is similar to that employed by 
Hammack & Segur (1974) in that  a volume of fluid is locally elevated a t  floor level. 
In the present case, however, the movable section in contact with the fluid was a 
flexible diaphragm in the shape of a quarter circle, rather than the rigid block used 
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FIGURE 4. A short section of the exposed photographic strip exhibiting the still-water level 
and the peak-amplitude trace. The direction of wave propagation is from left to right. 

by Hammack & Segur. The cavity between piston and diaphragm was filled with 
water such that a t  mid-stroke the diaphragm was level with the floor bottom ; thus 
a t  the beginning (top) of the stroke the diaphragm expanded down below floor level, 
and a t  the completion (bottom) of the stroke i t  distended above. In  all experiments 
reported here the displaced fluid volume was approximately 2100 cc and it will be 
assumed that the disturbance originated from the centroid of the diaphragm, located 
approximately 10 cm from the corner of the tank along its bisector. The speed of 
piston displacement allowed some qualitative control on the shape of the disturbance 
waveform as determined by light reflection off the wave crest ; slow speeds produced 
long-wavelength disturbances of low amplitude, while fast speeds produced relatively 
shorter-wavelength. higher-amplitude waveforms. 

Radial attenuation of the maximum wave height was measured by a novel, simple, 
yet surprisingly accurate measurement technique. The working fluid consisted of a 
solution of 20 parts water mixed with 1 part Kodak Flowmatic Fixer and the 
measuring device was unexposed photographic paper. Each experiment was 
performed under ‘safe’ lighting in the following manner. A long narrow strip of 
photosensitive paper was neatly cut and suspended vertically from a straight 
aluminium angle (figure 3, detail (f)). The angle was in turn suspended from a 
wooden beam spanning the top of the tank and resting in fixed blocks a t  diagonally 
opposite corners in line with and bisecting the submerged diaphram. At the 
beginning of a run, the piston was raised to the top of its stroke and the paper was 
gently immersed on edge 0.5 cm below the free surface, thus ‘fixing’ a line on the 
paper marking the undisturbed water level. Then the piston was manually actuated 
and the propagating wave wiped an elevated trace along the paper during its travel 
across the tank, thus ‘fixing’ the maximum amplitude signature. The support beam 
was removed from the liquid bath a t  an appropriate time before waves reflecting 
from the sidewalls (figure 3, detail (c)) impinged on the sensing surface of the paper 
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FIGURE 5.  (u, b ) .  Measured amplitudes from two sets of experiments for free-surface cylindrical 
waves propagating on quiescent fluid depths h = 4.5 cm (A), 5.0 em ( o) ,  5.5 cm (O), and 6.0 em 
(0). The solid lines correspond to a -&power slope and the dashed line represents a -;-power 
slope. 

strip. Finally, the paper was exposed to bright light and the developed photographic 
chart revealed two sharp lines separating the different exposure levels. A photograph 
ofa  short section of the photosensitive paper strip exhibiting the still-water level and 
wave-amplitude trace is presented in figure 4. As one can see, the end result of this 
measurement technique is a permanent, continuous record of wave amplitude as a 
function of radial position. Owing to the low surface tension of the working fluid, the 
liquid was observed to wet the sensitive side of the photographic paper with a contact 
angle of the order of 30". Wave-amplitude measurements are obtained by 
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differencing the amplitude trace from the free-surface level (figure 4) under the tacit 
assumption that the meniscus heights of the fluid in both its static and dynamic state 
are nearly equal. With this supposition, the wave amplitude can be readily measured 
(using a suitable calibrated optical magnifying instrument) to a precision limited 
only by the emulsion grain size. Repeated measurements show that the amplitude 
error obtained for the optical scale employed in this experiment is about f O . 1  mm, 
and measured values fell in the 5-17 mm range. 

The reader will, of course, realize that this new measurement technique is 
applicable only to a single propagating free-surface wave, or to the largest-amplitude 
wave in a system of free-surface waves such as a solitary wave train. Thus it is 
particularly well suited to this experiment wherein the large-amplitude lead wave 
(figure 3, ( a ) )  is followed by a secondary cylindrical wave (figure 3, ( b ) )  formed by 
reflection of the initial disturbance from the corner behind the diaphragm. The 
smaller-amplitude trailing wave was observed to remain distinctly separated from 
the faster-moving primary wave. 

Measurements from eight experiments, two at each of four fluid depths ranging 
from 4.5-6.0 em, are presented in figure 5 ( a ,  b) .  Slopes corresponding to the linear 
--; and nonlinear - Q  wave-attenuation power laws are presented for comparison. 
The initial short regions of nearly constant-amplitude wave motion observed for fluid 
depths 5.5 cm and 6.0 cm in figure 5 ( a )  are a result of transient wave formation from 
the piston displacement and are not relevant to the long-time evolution of interest 
in this study. There is some evidence from the experimental data [e.g. see figure 5 ( a ) ,  
h = 4.5 cm and figure 5(b ) ,  h = 5.5 cm] that the lead wave passes through a linear 
regime before undergoing a rather abrupt transition to the nonlinear regime. This 
feature will be discussed in more detail in $4.  

Space-time trajectories of the free-surface waves could have been obtained using 
a scrics of electronic wave gauges placed a t  intervals along a ray normal to the wave 
crest. However, we choose to test this aspect of the theory with existing internal- 
wave experiments (Maxworthy 1980) for which trajectory measurements are far 
more easily obtained. Furthermore, this permits an evaluation of results derived 
from the CKdV equation with respect to wave motion in a stratified fluid system. 

3.2. Cylindrical internal waves 

As part of an extensive experimental investigation on the formation of nonlinear 
internal waves, Maxworthy (1980, figure 13 (a ,  b ) )  has presented phase trajectories 
for cylindrical waves evolving from gravity currents propagating radially outward 
into a density-stratified fluid. The density profile p(z) was formed by emptying the 
contents of a container of dyed heavy salt solution under a clear thick layer of fresh 
water. The interface between saline and fresh water mixed and diffused into an error- 
function profile matching 9 cm of fresh water overlying 1 cm of salt water with 
density jump Ap E 0.01 g/cc. The waves were inherently visible owing to  the local 
thickening of the lower dyed layer produced by the propagating internal wave, and 
position-time measurements were obtained via overhead photography. A temporal 
record of wave amplitude a t  the radial position rp  = 205 cm was made by monitoring 
the output of a density probe placed a t  a fixed location in the pycnocline. 

To effect a comparison with Maxworthy's (1980) data, we model his measured 
density profiles as a two-layer fluid system for which the depth of the lower fluid 
laycr is 

h, = - b ( z )  -P,l dz,  
P1 'P 0 
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0 

AP h, Cl (drldt), r0 a0 

Fig. no. (g/cc) (cm) (cm/s) (cm/s) (cm) (cm) 

6(a) 0.0102 0.889 2.86 5.22 110 0.81 
6 ( b )  0.0104 1.063 3.06 5.62 147 0.97 

TABLE 1 .  Calculated parameters for the two-layer-fluid model and matching-point values for the 
theoretical trajectories given by (8). The total fluid depth is h = h,+h, = 9.7 em. 
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where p1 = p(0) and pz = 1.00 g/cc. The integration was performed by first curve- 
fitting the original data? and then numerically calculating the area under the curve 
using Simpson's rule. The ambient stratification parameters and the linear phase 
speeds determined from (10) are listed in table 1. (The fact that we have a stress-frce 
boundary condition instead of a rigid upper boundary as assumed in Benney's (1966) 
analysis can be shown to have a negligible effect on the linear phase speed of these 
internal waves.) We are implicitly assuming that the waves in Maxworthy's 
experiments may be modelled as shallow-water solitary waves rather than deep- 
water solitary waves of the type considered by Benjamin (1967), Davis & Acrivos 
(1967) and Ono (1975). Inspection of Maxworthy's original photographs reveals that 

-f We are grateful to Professor T. Maxworthy for providing copies of all relevant experimental 
data and photographs necessary to make a valid theoretical comparison. 
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the lead cylindrical wave separated from the gravity current somewhat before 
r, = 110 cm for the data reported here in figure 6 ( a ) ,  and before r, = 147 cm for the 
more energetic case reproduced in figure 6 (b ) .  These radii are choosen as the reference 
position for comparison with the theoretical trajectories given by (8). The unknown 
reference amplitudes a, are then determined by matching experimental and 
theoretical velocities a t  r = r,. The experimental wave speeds (drldt), are 
determined from the slope a t  ro of a fourth-degree polynominal least-squares fit to 
each experimental trajectory. When the measured parameters are inserted in (9), one 
obtains a, as the solution of a cubic algebraic equation. The matching-point data are 
listed in table 1, and the resulting theoretical trajectories emanating from this point 
are drawn as solid curves in figure 6. 

4. Numerical experiments on the effect of initial waveform 
As previously mentioned, the experimentally determined peak amplitudes for the 

free-surface-wave experiments displayed in figure 5 (a ,  b )  appetr in several instances 
to pass through short, well-defined regions of linear (a  a r-3) attenuation before 
evolving into the nonlinear (a  a r-i) regime. Also, for the sech-squared input profile 
used to generate the numerical results in figures 1 and 2 we see that the transition 
to the -f slope occurs quite rapidly when compared to the measurements given in 
figure 5 ( a ,  b ) .  In  order to better understand these aspects of the measurements, we 
hereby present results of three parameter studies designed to investigate the effect 
of initial disturbance profiles on amplitude evolution described by the CKdV 
equation (2). Specifically, we consider (Case 1) the effect of waveform section area for 
solitary wave-like disturbances wherein ah2 = const., (Case 2) the effect of wave 
steepness with constant waveform area, and (Case 3) the effect of wave skewness with 
constant waveform area. All numerical computations are initiated with disturbance 
profiles centred at 5 = 10. We note at the outset that all disturbances are isolated 
waves of elevation and in each case the disturbance volumes are sufficiently small to 
preclude wave fissioning, i.e. each initial waveform evolves into a single solitary wave 
followed by a shelf and dispersive tail. The results of the three case studies are 
discussed in turn below. 

Case 1 

disturbances having the planar solitary-wave profiles 
We first consider the effect of changing the waveform section area for initial 

[( 10,7) = a' sech2 (2/&). (11) 

The waveform areas are equal to 40114 3 and we vary the parameter a over the range 
0.4 < a < 1.2. Evolution curves of the peak amplitude Cp are presented in figure 7. 
Apart from the vertical displacement of each curve with increasing a, there are only 
minor qualitative differences between them. In each case the evolution to the 
nonlinear asymptotic decay law is smooth and the radial extent for transition 
increases gradually with decreasing a. There are no distinct regions exhibiting purely 
linear r-i amplitude decay. 

Case 2 
In  this numerical survey we follow the evolution of disturbances of the form 

6( 1 0 , ~ )  = a sech2 (z/+a7) (12) 
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FIGURE 7. Amplitude evolution curves computed by numerical integration of equation ( 2 )  
with initial sech-squared profiles given by ( 1  I ) .  

shown plotted in figure 8 ( a )  over the amplitude range 0.4 < a < 1.2. These profiles 
do not have the solitary-wave feature ah2 = const. Rather, the wave shapes are 
characterized by a constant-waveform-section area equal to 4/2/ 3. The evolution 
curves presented in figures 8 ( b )  each exhibit smooth transitions to the asymptotic 
r-3 attenuation law. For a = 1.2 the initial waveform is locally too steep, and the 
wave profile rapidly collapses to merge into the nonlinear regime. As a decreases, the 
adjustment to the asymptotic state occurs over progressively longer time periods. 
The evolution curves for a < 0.6 are reminiscent of the experimental measurements, 
suggesting that relatively low-amplitude, long-wavelength disturbances were 
produced by the piston displacement. Diminishing the amplitude in this case has a 
more profound effect on waveform evolution when compared to the previous study 
for solitary wave-like disturbances. In  particular, one observes distinctly longer 
radial transition regions as the disturbance amplitude decreases. It is clear from the 
results in figure 8 ( b ) ,  however, that  there are no well-defined regions of 1 . 1  behaviour, 
but rather the adjustment to the nonlinear regime may be characterized as a 
continuous. smooth transition. 

Case 3 

In  our final study, we investigate the effect of skewness with the idea that skewed 
initial waveforms may precipitate distinct regions of purely linear amplitude decay. 
The initial waveforms for this survey are given by 

wherein the parameter p affects the wave steepness and m and n arc integers in the 
range [0,2] such that m + n  = 2. The waveform area for each profile is again constant 
and equal to that in Case 2, namely 4/2/ 3. For m = 2 and n = 0 the waveform has 
positive skewness s = 1.30 (cf. Abramovitz & Stegun 1975). Waveforms of this type 
are plotted in figure 9 (a) for p = 1.5, 2.0, and 3.0, and we note that positive skewness 
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FIGURE 8. ( a )  Constant-volume profiles [(lo, T )  with parameter a defined by equation (12) used to  
test the effect of wave steepness on amplitude evolution. The volume under each curve is equal t o  
4/43, ( b )  Amplitude evolution curves computed by numerical integration of CKdV equation (2) 
using the profiles plotted in (a )  as initial data .  

corresponds to backward-tilting profiles. Forward-tilting profiles have negative 
skewness s = - 1.30, and this is obtained by setting m = 0 and n = 2 in (13). Fixing 
m = n = 1 results in a symmetric profile with zero skewness. 

Evolution curves for Cp at the three values of i3, each with positive, zero, and 
negative skewness, are presented in figure 9 ( b ) .  Of all the possible choices for /?, we 
present only those that most closely mimic the experimental data. The skewness has 
a profound effect in that the positively skewed profiles rise in amplitude while the 
negatively skewed profiles fall in amplitude before merging smoothly into the 
nonlinear regime. While the s = 0 and s = 1.30 curves evolve with continuously 
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FIGURE 9. ( a )  Constant-volume profiles c( 10, 7) with parameter p defined by equation (1 3) used to  
test the effect of skewness on amplitude evolution. The volume under each curve is equal to  4 / 4 3 ,  
( b )  Amplitude evolution curves computed by numerical integration of CKdV equation (2) using the 
profiles plotted in (a )  as initial data .  

changing slopes into the nonlinear regime, the negatively skewed disturbances do 
exhibit increasingly broader regions (as the parameter p increases) of nearly constant 
power-law attenuation before undergoing transition to  the nonlinear regime. 
However, power-law fits of the form r p  to these regions for s = - 1.30 show that the 
exponent ,u varies from curve to curve, and in each case ,u > -; so that no curve 
exhibits a discernible region of purely linear cylindrical distortion. 
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5.  Discussion of results 
Considering first the free-surface-wave experiments, it is clear that initial isolated 

disturbances ultimately evolve into the asymptotically predicted nonlinear Green’s 
law, a ~ r - 8 .  The logarithmic correction term in (7) produces no significant 
contribution since these long waves have, in fact, travelled only a few wavelengths 
in the nonlinear regime. For the same reason, and because the diverging sidewalls 
had negligible effect on the wave system, no discernible influence of boundary 
friction is apparent. Hence these experiments tend to be far more ‘ideal’ than similar 
free-surface-wave experiments in long, narrow channels (cf. Ippen, Kulin & Raza 
1955; and Weidman & Maxworthy 1978). 

The numerically computed evolution curves obtained from three parameter 
studies on waveform shape in $4 suggest that the piston displacements did not result 
in solitary-wave-like disturbances. Comparison between numerical and experimental 
amplitude evolution curves suggests that the wave generator produced low- 
amplitude, symmetric or possibly negatively skewed initial waveforms. The 
numerical study showed no evidence of distinct r-i amplitude decay prior to the 
nonlinear regime. On the other hand, as pointed out in $3.1, several of the measured 
evolution curves do exhibit this trend. We can only conclude that the relatively well- 
defined transition between r-i and r-i power laws observed in certain examples of the 
experimental data is not supported by integrations of the CKdV equation for initial 
waveforms considered here. Perhaps an inclusion of higher-order cylindrical 
dispersion terms, similar to the analysis of Chwang & Wu (1976), is necessary to 
capture this observed feature. 

Turning now to the internal-wave trajectories in figure 6, we again note that the 
logarithmic correction term in the analytical solution of KO & Kuehl (1978) does not 
affect the phase trajectories owing to the small value of the Ic-coefficient in (8), and 
the limited extent of wave propagation beyond the radial matching points ro. 
Bottom friction may be important for these waves since they scale with the lower 
fluid depth h,, and therefore propagate many more wavelengths across the tank in 
comparison to the free-surface waves. However, wave dissipation is not evident in 
the comparison between experimental and theoretical trajectories in figure 6, unless 
one infers that the experimental data for the most energetic case in figure 6 ( b )  are 
beginning to lag behind the theoretical trajectory. It is not surprising that the phase- 
trajectory comparisons based on the two-layer approximation work so well in this 
case. Previous calculations by Weidman & Johnson (1982) indicate that linear phase 
speeds for internal waves propagating along a pycnocline are accurately predicted 
using broken-line models for the measured density profiles. 

A comparison of theoretically inferred amplitudes with Maxworthy’s (1980) 
measurements can also be made. Calculating the wave amplitudes at  the probe radius 
rp = 205 cm, we find from (7)  the theoretical values up = 0.53 cm and 0.79 cm, to be 
compared with the measured values ap = 0.35 cm and 0.90 cm, respectively. There 
are two important considerations in making this comparison. First, the amplitude 
measurements depend on the vertical location of the conductivity probe within the 
pycnocline and hence cannot be directly compared to  the theoretical value for a two- 
layer system. Second, and perhaps more importantly, this comparison tacitly 
assumes ‘weak nonlinearity’ when in fact the smallness parameter, evaluated at the 
matching points listed in table 1, is about uo/h, = 0.9. Concerning this latter point, 
Maxworthy’s original photographs indicate that the waves in the neighbourhood of 
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r,, still contained coloured dye from the gravity-current intrusion. This implies closed 
streamlines within the cylindrical wave, a clear manifestation of strong nonlinear 
effects. 

6. Conclusion 
In summary, we have made direct comparisons between theory and experiment on 

the evolution of nonlinear cylindrical waves propagating in both homogeneous and 
stratified fluid ambients. New experiments using a novel ' highest-amplitude ' 
measurement technique clearly exhibit the predicted T-; power-law decay for these 
weakly nonlinear waves. It is pointed out that the cylindrical Korteweg-de Vries 
equation derived by Miles (1978) in the context of free-surface gravity waves also 
applies to internal gravity waves propagating in a density-stratified fluid. Direct 
comparison of predicted phase trajectories with internal-wave measurements 
reported by Maxworthy (1980) is effected by modelling his continuous pycnocline as 
a layered two-fluid system. The good corroboration between theoretical and 
experimental space-time trajectories is indicative of the low energy loss due to 
viscous dissipation in these axisymmetric, laboratory-scale wave systems. 

A numerical study of the effects of initial disturbance waveform on the amplitude 
evolution of cylindrical waves has been performed to interpret certain aspects of the 
free-surface wave experiments. Parameters varied include waveform area, wave 
steepness, and wave skewness. The results suggest that although the amplitude 
history is markedly affected by wave steepness and skewness, the evolving waveforms 
exhibit no distinct region of purely linear radial distortion preceeding the nonlinear 
regime. Rather, the numerical study based on the CKdV equation exhibits 
continuous, smooth transitions of disturbance waveforms to slowly varying 
cylindrical solitary waves. 

We are grateful to T. Maxworthy for use of his experimental facility in which these 
measurements were conducted and for financial support under an ONR contract to 
the University of Southern California. Casey de Vries provided expert technical 
assistance. Helpful discussions with N. Pereira and L. Redekopp on the subject of 
this paper are also acknowledged and we extend our thanks to K.  KO for guidance 
in development of the numerical code. The comments of two referees provided 
valuable improvement for the final manuscript. This work was partially supported 
by ONR Grant No. N00014-86K-0728. 

REFERENCES 

ABRAMOVITZ, M. & STEGUN, I. A. 1975 Handbook of Mathematical Functions. Dover. 
BENJAMIN, T. B. 1967 Internal waves of permanent form in fluids of great depth. J .  Fluid Mech. 

29, 559. 
BENNEY, D. J. 1966 Long nonlinear waves in fluid flows. J .  Math. Phys. 45, 52. 
CALOGERO, F. & DEQASPERIS, A. 1978 Solution bv the spectral-transform method of a nonlinear 

evolution equation including as a special casebe  cylindrical KdV equation. Lett. X w o  Cim. 
23, 150. 

CHANQ, P., MELVILLE, W. K. & MILES, J. W. 1979 On the evolution of a solitary wave in a 

CHWANG, A. T. & Wu, T. Y. 1976 Cylindrical solitary waves. Proc. IUTAM Symp. on Water Waves 
gradually varying channel. J .  Fluid Mech. 95, 401. 

in Water of Varying Depth, Canberra, Australia. 



Cylindrical solitary waves 573 

CUMBERBATCH, E. 1978 Spike solution for radially symmetric solitary waves. Phys. Fluids 21, 
374. 

DAVIS, R. E. & ACRIVOS, A. 1967 Solitary internal waves in deep water. J .  Fluid Mech. 29, 
593. 

GRIMSHAW, R. 1979 Slowly varying solitary waves. I .  Korteweg-de Vries equation. Proc. R. SOC. 

HAMMACK, J. L. & SEGUR, H. 1974 The Korteweg-de Vries equation and water waves. Part 2. 

IPPEN, A. T., KULIN, G. & RAZA, M. A. 1955 Damping characteristics of the solitary wave. 

JOHNSON, R. S. 1973 On an asymptotic solution of the Korteweg-de Vries equation with slowly 

Lond. A 368, 359. 

Comparison with experiments. J .  Fluid Mech. 65, 625. 

Hydrodyn. Lab., M.I .T.  Tech. Rep. 16. 

varying coefficients. J .  Fluid Mech. 60, 813. 
KAKUTANI, T. 1971 Effect of an uneven bottom on gravity waves. J .  Phys. SOC. Japan 30, 

272. 
KAUP, D. J. & NEWELL, A. C. 1978 Solitons as particles, oscillators, and in slowly changing 

KO, K.  1978 Korteweg-de Vries soliton in a slowly varying medium. PhD thesis, University of 

KO, K. & KUEHL, H. H. 1978 Korteweg-de Vries soliton in a slowly varying medium. Phys. Rev. 

KO, K. & KUEHL, H. H. 1979 Cylindrical and spherical Korteweg-de Vries solitary waves. Phys. 

LEIBOVICH, S. & RANDALL, J. D. 1973 Amplification and decay of long nonlinear waves. J .  Fluid 

MAXON, S.  & VIECELLI, J. 1974 Cylindrical solitons. Phys. Fluids 17, 1614. 
MAXWORTHY, T. 1980 On the formation of nonlinear internal waves from the gravitation collapse 

of mixed regions in two and three dimensions. J .  Fluid Mech. 96, 47. 
MILES, J. W. 1977 Note on a solitary wave in a slowly varying channel. J .  Fluid Mech. 80, 

149. 
MILES, J. W. 1978 An axisymmetric Boussinesq wave. J .  Fluid Mech. 84, 181. 
ONO, H. 1975 Algebraic solitary waves in stratified fluids. J .  Phys. SOC. Japan 39, 1082. 
OSTROVSKIY, L. A. & PELINOVSKIY, E. N. 1975 Refraction of nonlinear sea waves in a coastal 

PERROUD, P. H. 1957 The solitary reflection along a straight vertical wall a t  oblique incidence. 

SHUTO, N. 1974 Nonlinear waves in a channel of variable section. Coastal Engng Japan 17, 1. 
Su, C. H. & MIRIE, R. M. 1980 On head-on collisions between two solitary waves. J .  Fluid Mech. 

98, 509. 
VLIEGENTHART, A. C. 1971 On finite difference methods for the KdV equation. J .  Engng 

Maths 5, 2. 
WEIDMAN, P. D. & JOHNSON, M. 1982 Experiments on leapfrogging internal solitary waves. 

J .  Fluid Mech. 122, 195. 
WEIDMAN, P. D. & MAXWORTHY, T. 1978 Experiments on strong interactions between solitary 

waves. J .  Fluid Mech. 85. 417. 

media: a singular perturbation theory. Proc. Roy. Soc. Lond. A 361, 413. 

Southern California. 

Lett. 40, 233. 

Fluids 22, 1343. 

Mech. 53, 481. 

zone. Izv. A d .  Nauk S S S R ,  Atmos. Ocean. Phys. 11, 37. 

PhD thesis, University of California, Berkeley. 

19-2 


